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Abstract

Pulmonary hypertension (PH) is a hemodynamic
condition describing elevated pulmonary artery pressure.
To date, right heart catheterism is the gold standard
diagnostic test for PH, but it is an invasive and expensive
procedure. Deep learning (DL) techniques applied to
heart sounds have previously shown promising
performances for PH screening. In this work, we analyze
the impact of different input representations for PH
detection with convolutional neural networks (CNNs). We
found that considering each heartbeat as an independent
input yielded systematically lower performance than
considering the recordings as a whole: preserving the
information about the variability over the heartbeats is
key.  Time-domain  feature  maps  outperformed
handcrafted features and combining the time- and
frequency-domain proved consistently most effective.
Reducing the number of heartbeats to 30 did not affect
the performance, and even reducing to 10 beats preserves
the diagnostic value. The proposed analysis moves one
step further the applicability of DL for PH detection from
heart sounds in the clinical practice.

1. Introduction

Pulmonary hypertension (PH) is a hemodynamic
condition, involving an increase of the pressure in the
pulmonary artery and the right ventricle. The prevalence
of PH was estimated around 1% [1], but many cases may
be missed due to the coexistence of comorbidities in
conjunction with the lack of appropriate screening [1],
[2]. A delayed diagnosis was proven to reduce the 5-year
survival rate by almost 50% [3]. According to guidelines,
the gold standard test for PH diagnosis is Right Heart
Catheterism (RHC) [1]. Given its complexity,
invasiveness and cost, though, only critical patients
undergo RHC, leaving a gap for screening technologies.
To date, echocardiography is the main PH screening tool,
but it depends on the detection and analysis of a tricuspid
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regurgitation jet, which was found to have a low negative
predictive value for PH [4], [5]. Auscultation may offer a
promising complement or alternative to echocardiography
as a screening tool for PH. The ease of use, portability
and low-cost of heart sound technology may improve the
screening options in low-resource scenarios and enable
domiciliary screening. Deep learning (DL) techniques
applied to heart sounds have previously shown promising
performances for PH screening [6], [7], [8], [9].
Nevertheless, the application of DL methods to signals is
not straightforward and the input representation may
impact the performances of the model. In the literature,
the effect of input representation for PH detection from
heart sounds based on DL is still widely unexplored.

In this work, we focus on Convolutional Neural
Networks, a family of DL models which previously
showed promising performances for the task of interest
[6], [7]. CNNs are designed to work on images: multiple
options may be devised to translate heart sounds into an
image to be fed as input to the CNNs. The goal of this
work is to explore the effect of input representation on the
performances of the model for PH detection.

2. Methods

Our pipeline has three main steps: (a) feature extraction,
for translating the heart sound recordings into an
appropriate input for the model; (b) DL modelling; and
(c) empirical validation. The next paragraphs will present
details for each step.

2.1. Feature Extraction

CNNs were originally designed to process image data,
where the spatial arrangement of pixels encodes
meaningful patterns. This spatial consistency allows
CNNs to effectively capture local features, such as edges,
textures, and shapes, which are critical for image analysis.
Spatial consistency can also be leveraged for signal
analysis, provided that the signal is mapped into an
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Figure 1. Examples of the three proposed feature maps for a patient with PH (A-C) and without PH (D-F).

appropriate feature map where local features convey
relevant information for the downstream task.

In this work, we tested three different types of feature
maps, meant to translate the signal-domain information
into an image-domain input for the model. All three
approaches have previously shown  promising
performances for similar tasks [8], [10], [11]. All three
feature maps are based on 200-millisecond-long second
heart sound (S2) segments. The segments were obtained
from the original recordings by leveraging a DL-based
Hidden Markov Model [12].

Feature map 1: §2s. All the S2 segments from the a
given recording were stacked to create a 2D matrix. When
visualized as an image, the x axis represents the time, the
y axis the heartbeat index. In this sense, the representation
is fully in the time-domain. Each image has a size of N by
200, where N is the number of heartbeats.

Feature map 2: TFDs. Each S2 segment was
represented in the time-frequency domain. This was
performed using the Choi-Williams distribution (CWD),
an improved alternative to the Wigner-Ville distribution
(WVD) that reduces cross-term interference by applying
an exponential kernel in the ambiguity domain [13].
CWD was applied separately to each S2 segment, thus
obtaining an image per beat with the x axis representing
time, and y axis representing frequency. Each image has a
size of 50 by 200, with the frequency bandwidth spanning
from DC to 50 Hz. Images representing different
heartbeats from the same recordings could be stacked
together into a N-by-50-by-200 3D matrix.

Feature map 3: MFCCs. Mel Frequency Cepstral
Coefficients (MFCC) were extracted from each S2
segment to capture perceptually relevant spectral features.
13 MFCCs were computed, along with their first-order
and second-order temporal derivatives to incorporate
dynamic information. In this way, an image per beat was
obtained with the x axis representing time and the y axis

representing the MFCC features. Each image has a size of
39 by 200. Also in this case, images representing different
heartbeats from the same recording could be stacked
together into a N-by-100-by-200 3D matrix.

Figure 1 shows an example of the three feature maps
for a sample recording.

2.2. Deep Learning Modelling

Two different CNN architectures were designed and
tested for the PH detection task.

Model 1: 2D-CNN. The 2D-CNN model has a
traditional 2D  architecture composed of five
convolutional blocks. The first 2D convolutional layer
uses 32 3x3 filters, followed by batch normalization, 2x2
max-pooling layer and spatial dropout. Subsequent
convolutional blocks increase the number of filters to 64,
128, 256, and 512. All convolutional layers use the ReLU
activation. The output of the final convolutional layer is
flattened and passed through three fully connected layers
of sizes 512, 256, and 128, each followed by a 50%
dropout layer. The output layer has a sigmoid activation
function, returning the estimated probability of the PH
class. Each image is meant to be provided to the model as
a separate input: S2 segments get the same label as their
parent recording and are treated as independent. The
advantage is that the size of the dataset increases two
orders of magnitude. The total number of trainable
parameters is 203,979,457.

Model 2: 3D-CNN. The 3D-CNN model is a 3D
architecture designed to capture spatial features across
multiple dimensions. It begins with a 3D convolutional
layer employing 16 filters of size 3x3x3 with ReLU
activation, followed by batch normalization, a 3D 2x2x2
max-pooling layer, and spatial dropout. This is followed
by a second 3D convolutional block with 64 filters, again
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using ReLU activation, followed by batch normalization.
The output is flattened and passed through two fully
connected layers of sizes 128 and 64, each followed by a
dropout layer with a 50% dropout rate. The final output
layer leverages a sigmoid activation function to the
estimated probability of the PH class. Images from the
same recording are stacked and treated as a single input.
The advantage is that the information regarding the
variability of the sounds over the heartbeats is preserved.
The total number of trainable parameters is 74,731,425.

For both 2D-CNN and 3D-CNN, weights were
randomly initialized (no pre-training) and optimized
using Adam with a learning rate of le-5 and binary cross-
entropy as loss function.

2.3. Validation

Model performance was assessed using a bootstrapped
S-fold cross-validation strategy. In each iteration, three
folds were used for training, one for internal validation,
and one for testing on unseen data. Stratified sampling
was applied to ensure that each fold preserves the original
proportion of patients with and without PH. Folds were
constructed at the patient level to ensure that all
heartbeats from the same patient were assigned to the
same fold. This process was repeated 12 times using
different random partitions to enhance robustness. For
each repetition, the area under the receiver operating
curve (AUC) was computed, and overall performance was
summarized as the micro-averaged AUC across all folds,
with its standard deviation over the 12 repetitions.
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Figure 2. Graphical representation of the experiments
conducted.

2.4. Dataset

We performed our experiments on a private dataset
including 42 subjects (29 with, 13 without PH), acquired
at Centro Hospitalar Universitario do Porto, Portugal [8].
Ground truth pulmonary artery pressure was assessed by
RHC: patients with a mean PAP higher than 25 mmHg or
a systolic PAP higher than 30 mmHg were labelled as
PH, as per current guidelines [1]. Heart sounds were
recorded using a custom stethoscope head connected to a
Rugloop Waves system, with a sampling frequency of 8
kHz and a 16-bit dynamics. Recordings lasted 5 minutes.

3. Results

We designed three possible setups: using the 2D-CNN
with each heartbeat as an independent input; using the
2D-CNN with the average heartbeat; using the 3D model
with stacked images. All three setups were applied to
TFDs and MFCCs. The first was applied to S2s as only
one image describing the full recording is available.
Figure 2 proposes a graphical representation and results
are presented in Table I.

Table 1. Area under the ROC curves
(average + standard deviation over 12 repetitions)

Input 3D 2D 2D
(2D for S2s) | avgbeat | single beats
S2s 0.73 +£0.08 - -
TFDs 0.88+0.04 | 0.85+0.04 | 0.64+0.04
MFCCs 0.63+0.04 | 0.79 £0.06 | 0.60 +0.05

For each setup, we also tested the effect of reducing
the number of available heartbeats. This is relevant to
define the boundaries of the method for real-life
applications. Five-minute recordings, 30 heartbeats, and
10 heartbeats were tested. Results are shown in Figure 3.

4. Discussion and Conclusions

Three main aspects of the input representation were
analyzed in this work: a) the nature of the feature map, b)
the use of single heartbeats as independent inputs vs the
use of the entire recording, c¢) the duration of the
recordings, i.e., number of heartbeats.

We explored three of the most common feature maps
previously showing promising results for CNN-based
heart sounds classifiers. The three selected options
convey different information of the sound: its
morphology in the time-domain (S2s), its time-frequency
behavior (TFDs), its perceptually relevant features
(MFCCs). With MFCCs, leveraging the average heartbeat
resulted in significantly better results than preserving the
information of the single heartbeats, either as independent
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inputs or together. Nevertheless, we found that the
MFCCs were consistently suboptimal for the task of
interest. The fact that perceptual features perform poorly
is consistent with the complexity of detecting PH with
traditional auscultation. For time-domain feature maps,
considering each heartbeat as an independent input
yielded systematically lower performance than using the
recordings as a whole: preserving the information about
the wvariability over the heartbeats is key. Previous
literature shows that PH may provoke changes into time-
related cardiac biomarkers [5]: this seems consistent with
our findings. Combining time and frequency proved most
effective showing that the key information for PH
detection resides in the intersection between the two
domains. This may open to further research concerning
time- and frequency-acoustic biomarkers of PH.

We showed that reducing the number of heartbeats to
30 did not significantly affect the performances of the
tested input/model combinations. We can conclude that a
30-second recording is sufficient for clinical applicability.
Even reducing to 10 beats preserves the diagnostic value
of the test, with an AUC of the best input/model
combination (TFDs with 3D-CNN) higher than 80%. This
is relevant in real-life situations where collecting long
recordings is often complicated.

We believe that the proposed analysis clarifies the
importance of input representation in DL and moves one
step further the applicability of DL for PH detection from
heart sounds in the clinical practice.
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