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Abstract 

Pulmonary hypertension (PH) is a hemodynamic 

condition describing elevated pulmonary artery pressure. 

To date, right heart catheterism is the gold standard 

diagnostic test for PH, but it is an invasive and expensive 

procedure. Deep learning (DL) techniques applied to 

heart sounds have previously shown promising 

performances for PH screening. In this work, we analyze 

the impact of different input representations for PH 

detection with convolutional neural networks (CNNs). We 

found that considering each heartbeat as an independent 

input yielded systematically lower performance than 

considering the recordings as a whole: preserving the 

information about the variability over the heartbeats is 

key. Time-domain feature maps outperformed 

handcrafted features and combining the time- and 

frequency-domain proved consistently most effective. 

Reducing the number of heartbeats to 30 did not affect 

the performance, and even reducing to 10 beats preserves 

the diagnostic value. The proposed analysis moves one 

step further the applicability of DL for PH detection from 

heart sounds in the clinical practice. 

 

1. Introduction 

Pulmonary hypertension (PH) is a hemodynamic 

condition, involving an increase of the pressure in the 

pulmonary artery and the right ventricle. The prevalence 

of PH was estimated around 1% [1], but many cases may 

be missed due to the coexistence of comorbidities in 

conjunction with the lack of appropriate screening [1], 

[2]. A delayed diagnosis was proven to reduce the 5-year 

survival rate by almost 50% [3]. According to guidelines, 

the gold standard test for PH diagnosis is Right Heart 

Catheterism (RHC) [1]. Given its complexity, 

invasiveness and cost, though, only critical patients 

undergo RHC, leaving a gap for screening technologies. 

To date, echocardiography is the main PH screening tool, 

but it depends on the detection and analysis of a tricuspid 

regurgitation jet, which was found to have a low negative 

predictive value for PH [4], [5].  Auscultation may offer a 

promising complement or alternative to echocardiography 

as a screening tool for PH. The ease of use, portability 

and low-cost of heart sound technology may improve the 

screening options in low-resource scenarios and enable 

domiciliary screening. Deep learning (DL) techniques 

applied to heart sounds have previously shown promising 

performances for PH screening [6], [7], [8], [9]. 

Nevertheless, the application of DL methods to signals is 

not straightforward and the input representation may 

impact the performances of the model. In the literature, 

the effect of input representation for PH detection from 

heart sounds based on DL is still widely unexplored.  

In this work, we focus on Convolutional Neural 

Networks, a family of DL models which previously 

showed promising performances for the task of interest 

[6], [7]. CNNs are designed to work on images: multiple 

options may be devised to translate heart sounds into an 

image to be fed as input to the CNNs. The goal of this 

work is to explore the effect of input representation on the 

performances of the model for PH detection. 

 

2. Methods 

Our pipeline has three main steps: (a) feature extraction, 

for translating the heart sound recordings into an 

appropriate input for the model; (b) DL modelling; and 

(c) empirical validation. The next paragraphs will present 

details for each step. 

 

2.1. Feature Extraction 

CNNs were originally designed to process image data, 

where the spatial arrangement of pixels encodes 

meaningful patterns. This spatial consistency allows 

CNNs to effectively capture local features, such as edges, 

textures, and shapes, which are critical for image analysis. 

Spatial consistency can also be leveraged for signal 

analysis, provided that the signal is mapped into an 
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appropriate feature map where local features convey 

relevant information for the downstream task. 

In this work, we tested three different types of feature 

maps, meant to translate the signal-domain information 

into an image-domain input for the model. All three 

approaches have previously shown promising 

performances for similar tasks [8], [10], [11]. All three 

feature maps are based on 200-millisecond-long second 

heart sound (S2) segments. The segments were obtained 

from the original recordings by leveraging a DL-based 

Hidden Markov Model [12].  

Feature map 1: S2s. All the S2 segments from the a 

given recording were stacked to create a 2D matrix. When 

visualized as an image, the x axis represents the time, the 

y axis the heartbeat index. In this sense, the representation 

is fully in the time-domain. Each image has a size of N by 

200, where N is the number of heartbeats. 

Feature map 2: TFDs. Each S2 segment was 

represented in the time-frequency domain. This was 

performed using the Choi-Williams distribution (CWD), 

an improved alternative to the Wigner-Ville distribution 

(WVD) that reduces cross-term interference by applying 

an exponential kernel in the ambiguity domain [13]. 

CWD was applied separately to each S2 segment, thus 

obtaining an image per beat with the x axis representing 

time, and y axis representing frequency. Each image has a 

size of 50 by 200, with the frequency bandwidth spanning 

from DC to 50 Hz. Images representing different 

heartbeats from the same recordings could be stacked 

together into a N-by-50-by-200 3D matrix.  

Feature map 3: MFCCs. Mel Frequency Cepstral 

Coefficients (MFCC) were extracted from each S2 

segment to capture perceptually relevant spectral features. 

13 MFCCs were computed, along with their first-order 

and second-order temporal derivatives to incorporate 

dynamic information. In this way, an image per beat was 

obtained with the x axis representing time and the y axis 

representing the MFCC features. Each image has a size of 

39 by 200. Also in this case, images representing different 

heartbeats from the same recording could be stacked 

together into a N-by-100-by-200 3D matrix. 

Figure 1 shows an example of the three feature maps 

for a sample recording. 

 

2.2. Deep Learning Modelling 

Two different CNN architectures were designed and 

tested for the PH detection task. 

Model 1: 2D-CNN. The 2D-CNN model has a 

traditional 2D architecture composed of five 

convolutional blocks. The first 2D convolutional layer 

uses 32 3x3 filters, followed by batch normalization, 2x2 

max-pooling layer and spatial dropout. Subsequent 

convolutional blocks increase the number of filters to 64, 

128, 256, and 512. All convolutional layers use the ReLU 

activation. The output of the final convolutional layer is 

flattened and passed through three fully connected layers 

of sizes 512, 256, and 128, each followed by a 50% 

dropout layer. The output layer has a sigmoid activation 

function, returning the estimated probability of the PH 

class. Each image is meant to be provided to the model as 

a separate input: S2 segments get the same label as their 

parent recording and are treated as independent. The 

advantage is that the size of the dataset increases two 

orders of magnitude. The total number of trainable 

parameters is 203,979,457. 

Model 2: 3D-CNN. The 3D-CNN model is a 3D 

architecture designed to capture spatial features across 

multiple dimensions. It begins with a 3D convolutional 

layer employing 16 filters of size 3x3x3 with ReLU 

activation, followed by batch normalization, a 3D 2x2x2 

max-pooling layer, and spatial dropout. This is followed 

by a second 3D convolutional block with 64 filters, again 

 
Figure 1. Examples of the three proposed feature maps for a patient with PH (A-C) and without PH (D-F). 
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using ReLU activation, followed by batch normalization. 

The output is flattened and passed through two fully 

connected layers of sizes 128 and 64, each followed by a 

dropout layer with a 50% dropout rate. The final output 

layer leverages a sigmoid activation function to the 

estimated probability of the PH class. Images from the 

same recording are stacked and treated as a single input. 

The advantage is that the information regarding the 

variability of the sounds over the heartbeats is preserved. 

The total number of trainable parameters is 74,731,425. 

For both 2D-CNN and 3D-CNN, weights were 

randomly initialized (no pre-training) and optimized 

using Adam with a learning rate of 1e-5 and binary cross-

entropy as loss function. 

 

2.3. Validation 

Model performance was assessed using a bootstrapped 

5-fold cross-validation strategy. In each iteration, three 

folds were used for training, one for internal validation, 

and one for testing on unseen data. Stratified sampling 

was applied to ensure that each fold preserves the original 

proportion of patients with and without PH. Folds were 

constructed at the patient level to ensure that all 

heartbeats from the same patient were assigned to the 

same fold. This process was repeated 12 times using 

different random partitions to enhance robustness. For 

each repetition, the area under the receiver operating 

curve (AUC) was computed, and overall performance was 

summarized as the micro-averaged AUC across all folds, 

with its standard deviation over the 12 repetitions.  

2.4. Dataset 

We performed our experiments on a private dataset 

including 42 subjects (29 with, 13 without PH), acquired 

at Centro Hospitalar Universitario do Porto, Portugal [8]. 

Ground truth pulmonary artery pressure was assessed by 

RHC: patients with a mean PAP higher than 25 mmHg or 

a systolic PAP higher than 30 mmHg were labelled as 

PH, as per current guidelines [1]. Heart sounds were 

recorded using a custom stethoscope head connected to a 

Rugloop Waves system, with a sampling frequency of 8 

kHz and a 16-bit dynamics. Recordings lasted 5 minutes.  

 

3. Results 

We designed three possible setups: using the 2D-CNN 

with each heartbeat as an independent input; using the 

2D-CNN with the average heartbeat; using the 3D model 

with stacked images. All three setups were applied to 

TFDs and MFCCs. The first was applied to S2s as only 

one image describing the full recording is available. 

Figure 2 proposes a graphical representation and results 

are presented in Table I. 

 

Table I. Area under the ROC curves  

(average ± standard deviation over 12 repetitions) 

Input 3D  

(2D for S2s) 

2D  

avg beat 

2D  

single beats 

S2s 

TFDs 

MFCCs 

0.73 ± 0.08 

0.88 ± 0.04 

0.63 ± 0.04 

- 

0.85 ± 0.04 

0.79 ± 0.06 

- 

0.64 ± 0.04 

0.60 ± 0.05 

 

For each setup, we also tested the effect of reducing 

the number of available heartbeats. This is relevant to 

define the boundaries of the method for real-life 

applications. Five-minute recordings, 30 heartbeats, and 

10 heartbeats were tested. Results are shown in Figure 3. 

 

4. Discussion and Conclusions 

Three main aspects of the input representation were 

analyzed in this work: a) the nature of the feature map, b) 

the use of single heartbeats as independent inputs vs the 

use of the entire recording, c) the duration of the 

recordings, i.e., number of heartbeats.  

We explored three of the most common feature maps 

previously showing promising results for CNN-based 

heart sounds classifiers. The three selected options 

convey different information of the sound: its 

morphology in the time-domain (S2s), its time-frequency 

behavior (TFDs), its perceptually relevant features 

(MFCCs). With MFCCs, leveraging the average heartbeat 

resulted in significantly better results than preserving the 

information of the single heartbeats, either as independent 

 
Figure 2. Graphical representation of the experiments 

conducted. 
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inputs or together. Nevertheless, we found that the 

MFCCs were consistently suboptimal for the task of 

interest. The fact that perceptual features perform poorly 

is consistent with the complexity of detecting PH with 

traditional auscultation. For time-domain feature maps, 

considering each heartbeat as an independent input 

yielded systematically lower performance than using the 

recordings as a whole: preserving the information about 

the variability over the heartbeats is key. Previous 

literature shows that PH may provoke changes into time-

related cardiac biomarkers [5]: this seems consistent with 

our findings. Combining time and frequency proved most 

effective showing that the key information for PH 

detection resides in the intersection between the two 

domains. This may open to further research concerning 

time- and frequency-acoustic biomarkers of PH. 

We showed that reducing the number of heartbeats to 

30 did not significantly affect the performances of the 

tested input/model combinations. We can conclude that a 

30-second recording is sufficient for clinical applicability. 

Even reducing to 10 beats preserves the diagnostic value 

of the test, with an AUC of the best input/model 

combination (TFDs with 3D-CNN) higher than 80%. This 

is relevant in real-life situations where collecting long 

recordings is often complicated. 

We believe that the proposed analysis clarifies the 

importance of input representation in DL and moves one 

step further the applicability of DL for PH detection from 

heart sounds in the clinical practice. 
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Figure 3. Variation of the average AUC after the 

reduction of the duration to 30 beats and to 10 beats. 
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